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Abstract—Detection engines capable of inspecting packet payloads for application-layer network information are urgently required.

The most important technology for fast payload inspection is an efficient multipattern matching algorithm, which performs exact string

matching between packets and a large set of predefined patterns. This paper proposes a novel Enhanced Hierarchical Multipattern

Matching Algorithm (EHMA) for packet inspection. Based on the occurrence frequency of grams, a small set of the most frequent

grams is discovered and used in the EHMA. EHMA is a two-tier and cluster-wise matching algorithm, which significantly reduces the

amount of external memory accesses and the capacity of memory. Using a skippable scan strategy, EHMA speeds up the scanning

process. Furthermore, independent of parallel and special functions, EHMA is very simple and therefore practical for both software and

hardware implementations. Simulation results reveal that EHMA significantly improves the matching performance. The speed of EHMA

is about 0.89-1,161 times faster than that of current matching algorithms. Even under real-life intense attack, EHMA still performs well.

Index Terms—Network-level security and protection, network security, intrusion detection, pattern matching, content inspection.

Ç

1 INTRODUCTION

NETWORK services are extremely important since many
companies provide services over the Internet. A

variety of Internet-based applications have created a strong
demand for content-aware services, network policy, and
security management. Furthermore, increasing amounts of
important information exist in packet payloads. Therefore,
low-layer network equipment is inadequate for checking
the information, since it only checks specified fields of the
packet headers. High-layer network equipment providing
in-depth packet inspection, such as intrusion detection
systems (IDSs), application firewalls, antivirus appliances,
and layer-7 switches, is a prerequisite in a network. Such
equipment typically contains a policy or rule database
applied to finding certain packets over the network. Every
rule in the database consists of several patterns (also called
signatures) and a matching action (or a series of actions).
These patterns describe the fingerprints of packets.

The network equipment applies the predefined patterns
to identify and manage the monitored packets over the
network. Different network equipment may have different
pattern databases applied, respectively, to attack detection,
bandwidth management, load balancing, and virus blocking
over the network. However, they have similar features in
terms of patterns and matching procedures. The number of

patterns is typically a few thousands, and the lengths of the
patterns are varied. The patterns may appear anywhere in
any packet payload. Consequently, the emerging high-layer
network equipment needs a pattern detection engine capable
of in-depth packet inspection, which searches the entire
packet headers and payloads for pattern matching. Network
equipment then employs the detection results to manage
network systems intelligently. For instance, Snort is an open-
source network-based intrusion detection system (NIDS)
and is adopted for detecting anomalous intruder behavior
with a set of patterns and generating logs and alerts from
predefined actions [1]. One of the patterns of Nimda worm
is described as “GET/scripts/root.exe?/c+dir.” When the
detection engine of Snort finds this pattern existing in a
packet, the corresponding alert is generated to warn net-
work administrators. The pattern matching is considered as
the most resource-intensive task in the Snort detection
engine [2]. Hence, this study focuses on the nascent issues of
the payload inspection.

The most important part of a detection engine is a
powerful multipattern matching algorithm, which can
efficiently process the pattern matching task to keep up
with the growing data volume in the network. However,
conventional string-matching algorithms are impractical
for packet inspection [3], [4], [5]. Due to the large pattern
database, an effective detection engine must be able to search
for a set of patterns simultaneously, rather than iteratively
performing the single-pattern matching. While considering
implementation issues of the network equipment, the
performance of processing packets is not only affected by
the computation time but also strongly affected by the
memory latency. As is well known, the rate of improvement
in processor speed exceeds that of improvement in memory
speed [6]. The gap has been the largest problem for system
builders. Therefore, the vital issue of designing a high-speed
detection engine is to reduce the number of external memory
accesses [8].
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This study proposes a novel Enhanced Hierarchical Multi-
pattern Matching Algorithm (EHMA) for fast packet inspec-
tion, which simultaneously searches the packet payload for a
set of patterns. This study contributes modifications to the
hierarchical matching algorithm (HMA) [9] and introduces
the idea of a sampling window and a Safety Shift Strategy in
addition. EHMA is a two-tier and cluster-wise matching
algorithm and can perform fast skippable payload scan.
Based on the occurrence frequency of grams, this study
discovers a small set of signatures from the patterns
themselves to narrow the searching domain. A Min-Max
strategy is used in the EHMA. The hit rate of the first-tier
table in the EHMA is minimized, while the spread of patterns
in the second-tier table is maximized. Accordingly, EHMA
significantly reduces the number of memory accesses and
pattern comparisons. EHMA can skip unnecessary payload
scans by applying the proposed Safety Shift Strategy, which is
based on a frequency-based bad gram heuristic. The frequency-
based bad gram heuristic is a modification of the bad grouped
character heuristic of Wu-Manber (WM) algorithm [10].
Therefore, EHMA has the advantages of both HMA and WM.

The memory space and the number of external memory
accesses required by the proposed EHMA are much smaller
than those required by state-of-the-art multipattern match-
ing algorithms. EHMA needs less than 40-Kbyte memory
space to construct required tables for the Snort patterns and,
therefore, enables small-scale and cost-effective hardware
implementations. Using only 768-byte on-chip memory,
EHMA reduces the average number of external memory
accesses to 0.06-0.19 and, thus, significantly improves the
matching time of the detection engine. Simulation results
reveal that EHMA outperforms the state-of-the-art algo-
rithms. Even under real-life intense attack, EHMA still
outperforms others. Because it employs only basic instruc-
tions and two small index tables, EHMA is very simple for
hardware and software implementations. Consequently,
the proposed EHMA is a very cost-effective and efficient
mechanism for real-life network detection systems.

The rest of this paper is organized as follows: Section 2
presents previously proposed pattern matching algorithms
and the fundamental definitions. Section 3 then describes
the proposed EHMA in detail. Next, Section 4 presents the
performance and memory requirements of EHMA. Conclu-
sions are finally drawn in Section 5.

2 RELATED WORK

This section discusses the main concepts and the limitations
of the state-of-the-art exact string matching algorithms that
have been used or modified for packet inspection. Some
fundamental definitions and notations used in this study
are presented.

2.1 Notations

An array is used to represent a string of characters from an
alphabet set �. Namely, an element representing string T at
the position i is given by T ½i�, where T ½i� 2 �. The absolute
value of an object means the size of the object. For instance,
jT j denotes the length of the string T , and j�j is the number
of elements in the set �. A function subðT; i; BÞ is defined as
the substring of T from T ½i� to T ½iþB� 1�. A string can also

be denoted as a set of B-grams, where a gram is defined as a
group of characters, and B is the number of characters in a
gram. For instance, the string “green” can be converted into
a set of 2-grams {“gr”, “re”, “ee”, “en”} when B ¼ 2. The
ith B-gram of a string T is represented as TB½i�.

Let PP ¼ fpig be a set of distinct patterns, where pi
denotes a pattern with an identification number (ID) i. The
payload of an input packet T and the pattern pi 2 PP are
both strings drawn over � with finite length jT j and jpij,
respectively. The notation e:f denotes the value of the field
(or offset) f at the entry (or address) e. If e is a table, then e:f
means all fields named f of the table e.

A single-pattern matching algorithm is used to search a
string (or text) T for the first occurrence or all occurrences of
one given pattern. A multipattern matching algorithm is
applied to search the inputT for all occurrences of any pattern
pi 2 PP , or to corroborate that no pattern ofPP is inT , where the
number of patterns is from hundreds to thousands. In other
words, the algorithm aims to find all the matched patterns in
T , say PPMM � PP such that PPMM ¼ fpi j 8pi � T and pi 2 PPg.
PPMM can be applied to any high-level detecting rule, such as
the high-priority-win, first-matched-win, or other state-
concerned rules.

2.2 Previous Work

Single-pattern matching algorithmswere originally proposed
to perform text searching problem in computer systems. In
single-pattern matching, Boyer-Moore (BM)-based algo-
rithms provide the best average-case performance in terms
of computation complexity, which is sublinear to the input
string [3], [13]. The BM algorithm uses the bad character and
good suffix heuristics to build a skip table and a shift table,
respectively [13]. The Boyer-Moore-Horspool (BMH) algo-
rithm, which is a variant of BM, slightly modifies the bad
character heuristic to construct a single skip table [3]. The tables
of BM and BMH are precomputed and used to determine the
number of safety shifts of each character for the searching
process. Some characters of T can thus be skipped in the
matching process on specific conditions. Several approaches
apply the BM-based single-pattern matching algorithms
iteratively to solve the multipattern matching problem.
However, network equipment usually has a large pattern
database. Iteratively performing the single-pattern matching
for multipattern matching in the packet inspection engine is
inefficient. Markatos et al.’s approach promotes Snort by
using a bitmap filter before BMH but still searches for only one
pattern in each iteration [11].

Several modifications to BM-based algorithms have
been proposed for the multipattern matching. Risk and
Varghese’s (RV) approach groups all patterns to precalculate
the number of safety shifts of each character [5]. The
WM approach, which assumes that all patterns are larger
than M characters, groups B-grams of the M-character
prefixes of all patterns to build a shift table [10]. The WM’s
shift table contains the valid shifts of eachB-gram. Liu et al.’s
algorithm [a variant of the WM algorithm using a grouped
prefix hash (WM-PH)] groups the B-character prefixes of all
patterns to build a large hash table, in which each entry
contains valid shifts of the corresponding B-character prefix
[12]. However, the maximum shift value of RV and WM must
be not larger than the minimum pattern length in PP , in order
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to avoid missing any pattern. Thus, RV and WM are
unfeasible when the pattern set includes single-character
patterns. The required memory space of the table in the
algorithms WM and WM-PH is in the order of Oðj�jBÞ.
Generally, B ¼ 3, and the table consists of 16 million entries
when the alphabet size is 256 as in 1-byte coding. The large
tables must be stored in the external memory, which leads to
long access delay during the matching process.

It has been pointed out that the Aho-Corasick (AC)
algorithm provides the best worst-case computational time
complexity [4]. Using a compressed structure, Tuck et al.
proposed the AC algorithm with memory compression
(AC-C), a modification of AC, and reduced the required
memory to about 2 percent of AC [8]. ACM applied a magic
number derived from the Chinese Remainder Theorem to
AC [14]. ACM reduced the required memory space and
computation complexity, thus improving the worst-case
performance. However, the required memory of AC-C and
ACM is typically too large to be cached in the on-chip
memory of embedded systems, field-programmable gate
arrays (FPGAs), and network-processor-based platforms.
Although the AC-based algorithms have the best worst-case
computational time complexity, the latency of external
memory accesses dominates the processing performance
rather than computational time. Coit et al. proposed a
matching algorithm for Snort that combines BM and
AC [15]. However, this algorithm requires three times the
memory of the standard version and may produce incon-
sistent matching results.

A Piranha algorithm was proposed based on an idea that
if a least popular B-gram of a pattern exists in a packet, then
this packet may have a pattern [16]. A least popular gram of
a pattern was chosen as an index key of a pattern. However,
the Piranha algorithm cannot handle the patterns smaller
than B, and the required memory space is very large
ðOðj�jBÞÞ. Although the idea of least popular index keys can
reduce the collisions of patterns, the hit rate of index table is
increased, thus increasing the number of external memory
accesses and pattern comparisons.

In the case of hardware solutions, Li et al. presented an
FPGA-based detection engine for NIDSs, using the internal
content addressable memory (CAM) technology to speed up
multipattern matching [17]. Since an internal CAM of FPGA
is not large enough to store all patterns, Li et al.’s approach
has to dynamically reload a block of patterns into the CAM,
causing long latency. Moreover, the patterns of varied
lengths complicate the formulation of a CAM for exact
matching, but Li et al.’s approach does not mention the
solution for patterns with varied lengths. Dharmapurikar
et al. used Bloom Filters (BFs) and Kim and Kim employed
mask filters in the FPGA-based packet inspection [18], [19].
However, these two methods only act as prefilters and have
to cooperate with another string matching algorithm to
verify a match, and furthermore, this BF-based algorithm
can be used only in the case that all patterns are longer than
a certain length. Lu et al. used several binary CAMs and BFs
to implement parallel compressed deterministic finite
automata (DFA), and Dharmapurikar et al. combined AC
with BFs for packet inspection [20], [21]. These two methods
applied parallel BFs and assumed that BFs can execute one
query every clock cycle. However, these architectures and

assumptions can only be established in some specific
hardware implementations. BFs are inefficient in the soft-
ware implementations, because one BF consists of several
hash functions and the computation time of hash functions
is usually expensive in software [6].

3 THE ENHANCED HIERARCHICAL MULTI-PATTERN

ALGORITHM

Some network equipment is implemented by network
processors, FPGAs, networks-on-chip (NOCs), or systems-
on-a-programmable-chip (SOPCs) to improve the perfor-
mance. The embedded memory of these platforms is
typically very small. For instance, the Intel IXP2x00 network
processor has only a 4-Kbyte instruction cache and a
2-Kbyte data cache in each microengine, while the Vitesse
IQ2000 network processor has a 4-Kbyte data cache (2 Kbytes
for local storage and 2 Kbytes for reserved header buffers)
[22], [23]. Although high-end FPGAs providing up to
1-Mbyte embedded memory are available, linking many
memory blocks degrades the chip performance. Never-
theless, the required memory of the previous pattern
matching algorithms is generally larger than 300 Kbytes
for NIDSs. Hence, the patterns and the tables built by
matching algorithms need to be stored in external memory.

However, frequently accessing the external memory (to
read patterns or tables) significantly decreases the matching
efficiency due to the external memory access latency being
very long and indeterminable. For example, Intel IXP2x00
needs about one cycle for one microprocessor instruction
but about 150 cycles for each access from SRAM (or 250-
300 cycles from DRAM) [7]. The memory latency strongly
affects the throughput of pattern matching. Therefore,
reducing the number of required external memory accesses
is more important than reducing the amount of computa-
tional time.

This study proposes an EHMA based on a hierarchical
and cluster-wise architecture. EHMA comprises two small
index tables, namely the first-tier table (H1) and the second-
tier table (H2). These two tables act as filters to avoid
unnecessary external memory accesses and pattern com-
parisons and, thereby, pass the innocuous packets quickly
in the online matching process. The second-tier procedure
(Tier-2 Matching) activates only after the first-tier procedure
(Tier-1 Matching) gets a match. Using H2, which indicates a
small subset of patterns that are similar to the input packet,
EHMA compares only a few selected patterns of PP with the
suspected substrings of the packet, rather than comparing all
patterns with all substrings of the packet. Furthermore, a
frequency-based bad gram heuristic is proposed in the EHMA
to determine the safety shifts on the input strings during the
online matching process. In other words, some characters
of the input packets can be safely skipped without any
process. External memory accesses are needed only in the
Tier-2 Matching state. Consequently, EHMA significantly
enhances the matching performance and effectively re-
duces the number of external memory accesses, string
comparisons, and character scans, by utilizing two small
index tables.

This study proposes a general frequent-common gram
searching (GFGS) algorithm and a cluster balancing strategy
(CBS) to lower the size of the tables H1 and H2. The
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following sections describe the GFGS, CBS, and the Safety
Shift Strategy in detail. The hierarchical online matching
using these two index tables, namely Tier-1 Matching and
Tier-2 Matching, is then shown.

3.1 The GFGS Algorithm

In the high-layer intrusion detection, patterns may appear
anywhere in the packet payload, making the attacking
packets difficult to recognize. GFGS assumes that a small
set of signatures can be found from the patterns themselves,
then the suspicious substrings of T may be easier to
distinguish from the innocent parts, and the pattern
matching is therefore faster. A set of significant grams is
defined as representatives of a pattern set PP , given by
= � �B1 , where the size of a gram is B1 characters. The
set = is much smaller than �B1 . Only when at least a
significant gram occurs in the payload, a pattern may exist.
That is, when at least one B1-gram of pi belonging to =
occurs in the payload T , the pattern pi 2 PP may be found in
T . Many innocent B1-grams of T , which do not belong to =,
can be filtered in the Tier-1 Matching when scanning the
packet payload. Obviously, smaller = leads to fewer pattern
comparisons and, thus, faster pattern matching. The GFGS
is proposed to find the smallest = from PP .

Define PPg as a subset of PP , with PPg ¼ fpi j pi has the
gram g; 8 pi 2 PPg, where g is called the common gram of
those patterns in the set PPg. Notably, if a common gram
appears in the distinct patterns more frequently than other
grams and it is selected as one of the significant grams,
then a smaller == is found. Based on this inference, the
GFGS algorithm is designed to find the frequent-common
gram set FF , such that FF is the minimum set of significant
grams to represent a pattern set PP . In the GFGS, the
common grams are searched only from the sampling window,
which is defined as the last W characters of the first
m characters of a pattern. The range of m is M � m � jpij,
where M denotes the minimum pattern length of all
patterns, and jpij is the current pattern length. Fig. 1

illustrates the sampling window, where B1 is the size of a
frequent-common gram, B1 �W , and B2 is the size of the
second pivot in the H2 table, which is explained later.

The GFGS algorithm is presented in Fig. 2. A bitmap
vector V ¼ ðviÞ and a matrix R ¼ ðrijÞ are temporary
memories, where 0 � i, j < j�jB1 . Vector V records the
occurrence of each B1-gram in a pattern; R is used for
recording frequency, where rij, i 6¼ j, indicates the number
of concurrent occurrences of two B1-grams gi and gj in PP ;
and rii records the frequency of the B1-gram gi occurring in
distinct patterns. For instance, rij ¼ 2 means there are
two patterns, each containing both gi and gj. In the
GFGS algorithm, each pattern is first transferred into a set
of B1-grams, and the occurrence of each B1-gram is
recorded in the bitmap V , where B1 is predefined and
depends on the available on-chip memory space. Matrix R
is then derived from V (as shown in line 4 of Fig. 2). Second,
the largest occurrence frequency rff is found, and its
corresponding gram gf is selected as one of FF . The elements
of R relating to gf are subtracted accordingly to renew R.
GFGS is repeated until all elements on the diagonal of R
become zero. GFGS uses only a matrix and a vector to
discover FF from PP .

Fig. 3 plots the pattern spectrum of the Snort patterns
with different gram sizes. The pattern spectrum indicates
the occurrence frequency of grams of patterns. Fig. 3a
shows the distribution of 2-grams of patterns, and Fig. 3b is
the distribution of 1-gram of patterns. As shown in the
figures, they are not normally distributed and have several
peaks, which mean that some grams obviously occur more
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Fig. 1. The sampling window.

Fig. 2. The GFGS algorithm.

Fig. 3. The pattern spectrum when jPP j ¼ 1; 200. (a) Spectrum of 2-grams. (b) Spectrum of 1-gram.



frequent than others. Hence, GFGS can easily discover the
most frequent grams from patterns and obtain a small FF as
the signatures of patternset. Since both 1-gram and 2-gram
spectrums have peaks, the gram size of FF can be one or two,
depending on the available size of on-chip cache.

3.2 Cluster Balancing Strategy (CBS)

Most packets are innocent in general situations. Even a
harmful packet may contain only few patterns. Therefore,
comparing all of the patterns in the large PP with each input
packet is time consuming. If the patterns in PP can be
distributed into different small clusters based on their
similarity, then only the pattern in each cluster that is most
similar to the suspected packet needs to be compared, thus
improving the efficiency of the matching process. This
section presents strategies to attain this goal. First, the
method of clustering a set PP based on the similarity of
patterns is described. Then, a CBS is adopted to balance the
cluster size. A second-tier table (H2) for online matching can
be constructed based on the clusters.

The clustering pivots are the keys used to distribute
patterns, where each clustering pivot is a common gram of
patterns defined previously. Two common grams are
employed as a pair of clustering pivots, called a pivot pair,
say ða; bÞ, where the first pivot is a frequent-common gram,
and the second pivot is the substring following the
frequent-common gram. Let PPa;b represent a cluster of
selected patterns (a subset of patterns) with the pivot
pair ða; bÞ, which means that PPa;b ¼ fpi j ‘ab’ � pi; a 2 FF and
b 2 �B2g, where ‘ab’ is the combination of two strings a and
b and is a substring of pi; FF is the result of GFGS, and B2 is
the length of the second pivot. Notably, a pattern is
assigned to only one cluster in the clustering strategy,
although a pattern may have more than one pivot pair. That
is, the clusters have the following properties: for any cluster
PPa;b � PP , [all a;bPPa;b ¼ PP and \all a;bPPa;b ¼ ;. Since a pattern
may have several opportunities to select a cluster, a better
assignment can lower the maximum cluster size and,
thereby, improve the worst-case performance of EHMA.

The pattern grouping is based on FF . To lower the worst
matching time, CBS is adopted to balance the size of all
clusters. In CBS, an jF j � j�jB2 matrix N ¼ ðna;bÞ is used to
record the current size of every cluster PPa;b during the
pattern grouping procedure. The CBS is given as follows:

1. First, read one pattern at a time from PP and scan the
pattern.

2. According to GFGS, for any given pi, there exists a
B1-gram g 2 FF , where B1 is the length of a frequent-
common gram. To balance the cluster size, CBS finds
the smallest na;b, given by nx;y, among all available
pivot pairs ða; bÞ’s of pi, for all a 2 FF and ‘ab’ � pi.

3. After grouping pi into the smallest cluster PPx;y, the
corresponding nx;y is also incremented.

All patterns are distributed sequentially into the desig-
nate clusters. Accordingly, GFGS and CBS divide the large PP
into smaller subsets.

3.3 Safety Shift Strategy

This section presents a safety shift strategy to derive the
values of the shift fields ofH1 andH2.H1 andH2 can use the

same strategy to derive their safety shifts, respectively. As
mentioned previously, as long as no frequent-common gram
is matched in input strings, then no pattern exists. There-
fore, if no frequent-common gram is missed, then no pattern
will be missed. The safety shift strategy is based on a
modified bad grouped character heuristic [7], named frequency-
based bad gram heuristic in this study. The safety shift strategy
ensures that no frequent-common gram is missed during a
skippable scanning process. The proposed strategy helps
EHMA to speed up the online matching process, since
certain characters can be skipped unhesitatingly.

Assume that x identifies all possible index keys and that
the length of x is B. Because the index keys of H1 and H2

are different, the parameters used to determine the shift
fields of these two tables are different. For H1, as the length
of a frequent-common gram is B1, thus x 2 �B1 and B ¼ B1.
For H2, since x is all the possible of the pivot pairs ða; bÞ,
x 2 FF � �B2 and B ¼ B1 þB2. The basic concept of the
safety shift strategy is that: if x is not a gram of any pattern,
and any suffix of x is not any prefix of any pattern in PP ,
then it is safe to shift m when x is scanned; otherwise, the
number of safety shifts is the offset between the rightmost
occurrence position of x and the position of the frequent-
common gram nearest to x. Two parameters are needed to
derive the safety shifts, namely W and m, as shown in
Fig. 1. Assume that B �W � m, and define the safety shifts
of each entry ðHðxÞ:shiftÞ as follows:

1. Initially, all shift fields of the table H are set as

If m > W , then

HðxÞ:shift ¼ m�W þ q,
where q ¼ minfq j 9 subðx; q þ 1; B� qÞ ¼ subðp; 1;
B� qÞ; 8p 2 PP and 1 � q < Bg when B > 1 and

q exists; otherwise, q ¼ B.

Else

HðxÞ:shift ¼ r,
where r ¼ minfr j 9 subðx; rþ 1; B� rÞ ¼ subðf; 1;
B� rÞ; 8f 2 FF; 1 � r < B; and rþB < Wg when

B > 1 and r exists; otherwise, r ¼ B.

2. Scanning every pattern p, for each ith B-gram of
each pattern pB½i�, where 1 � i � m�W , set x 
pB½i� if the entry HðxÞ exists:

If the current HðxÞ:shift > m�W � iþ 1, then

update the entry, so that

HðxÞ:shift ¼ m�W � iþ 1.

3. For each ith B-gram of each pattern pB½i�, where
m�W < i � m�Bþ 1, set x pB½i� if the entry
HðxÞ exists:

If x 2 FF , then

HðxÞ:shift ¼ 0;

Else If the current HðxÞ:shift > r, then update the
entry:

HðxÞ:shift ¼ r,
where r ¼ minfr j 9 subðx; rþ 1; B� rÞ ¼
subðf; 1; B�rÞ; 8 f 2 FF; 1�r < B; and rþB<Wg
when B > 1 and r exists; otherwise, r ¼ B.
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Notably, the maximum shift of EHMA is m while
W ¼ B. The frequent-common grams and the sampling
window are introduced in the proposed frequency-based
bad gram heuristic to improve the flexibility and the
efficiency. Additionally, comparing EHMA with WM,
the maximum safety shift is raised from m�Bþ 1 to m.
The shift value of the proposed EHMA is similar to but
larger than the shift value of WM, when the given
parameters are m ¼M and W ¼ B.

3.4 Table Construction

The result of GFGS,FF , is used to construct the small tableH1,
which is stored in the on-chip memory. A direct index table
of j�jB1 entries is used for H1 to achieve fast lookup. B1 is
usually very small (B1 ¼ 1 or 2) and is predefined according
to the available size of on-chip memory. An entry of H1 is
denoted as H1ðaÞ, where a is a B1-gram, and each entry has
three fields: the frequent-common gram ID, H1ðaÞ:fid; the
pattern ID when a itself is a pattern,H1ðaÞ:pid, and the safety
shift number in the Tier-1 Matching, H1ðaÞ:shift. Namely,
H1ðaÞ:fid¼fi j a¼fi 2 FFg, a n d H1ðaÞ:pid ¼ fi j jpij ¼
jfij ¼ B1; pi ¼ ‘a’ and pi 2 PPg. The unused fields of H1 are
set to NULL. SinceH1 is a small table (for instance, 256 entries
in the case of 1-byte coding and B1 ¼ 1), it can be stored in
the on-chip cache. Later, H1 acts as a filter in the online
matching to quickly discover whether the packet contains a
pattern. Namely, EHMA employs H1 to quickly scan and
jump over the innocent substrings of the input packets and to
narrow the searching field to the most likely clusters.

The H2 table is built based on the cluster assignments.
H2 contains the pattern contents and formatted information
of patterns for fast online matching. Let H2ða; bÞ denote an
entry of H2, indicating the head pattern of the cluster PPa;b,
and defined as

H2ða; bÞ ¼ H1ðaÞ:fid� j�jB2 þ b;

where B2 is the length of the second pivot b and is
predefined according to the available size of the external
memory. Each entry H2ða; bÞ consists of six fields: the
safety shift number in the Tier-2 Matching H2ða; bÞ:shift,
the position of the frequent-common gram in the
pattern H2ða; bÞ:offset, the pattern size H2ða; bÞ:size, the
pattern content H2ða; bÞ:data, the pattern ID H2ða; bÞ:pid,
and a pointer H2ða; bÞ:next to the entry of the next pattern
in the same cluster PPa;b or the fragmented content of the
current pattern. Transferring the information of patterns
into a predefined format can accelerate the matching
procedure. The patterns in the same cluster PPa;b point to
the same head entry H2ða; bÞ and are linked by the linked
list structure to optimize the memory usage. The required
memory size of H2 is jF j � j�jB2 entries plus the shared
memory pool.

For example, if pi is clustered to PPa;b by CBS and H2ða; bÞ
is empty, then the information of pattern pi is saved into
H2ða; bÞ, where H2ða; bÞ:size ¼ jpij, H2ða; bÞ:data ¼ pi, and
H2ða; bÞ:offset ¼ k i f t h e kth B1- gr a m o f pi i s a,
H2ða; bÞ:pid ¼ i, and H2ða; bÞ:next is NULL. If another pj is
also clustered to PPa;b, then a free entry is also assigned to pj
and linked with the previous pattern pi. Similarly, if the
pattern size of pi is larger than the width of data field, then

pi is fragmented, and the remaining part is saved in a free

entry of the shared memory pool, and the address is saved

in H2ða; bÞ:next.
Fig. 4 shows an example of EHMA, which has five

patterns: “actress,” “teacher,” “firefighter,” “farmer,” and

“architect,” where the alphabet set comprises the 26 English

letters. The parameters for EHMA are assumed B1 ¼ 1,

B2 ¼ 1, m ¼ 6, and W ¼ 3. Fig. 4a demonstrates the GFGS.

According to the GFGS (lines 2-4 of Fig. 2), after scanning

the first W �B2 characters of the sampling window of

every pattern (the underlined characters of the patterns in

Fig. 4a), the matrix R is obtained and shown in the figure. In

the first run, the maximum value on the diagonal of R is

three, and thus the corresponding gram “e” is added into FF .

After refreshing the elements on the diagonal of R (lines 8

and 9 of Fig. 2), GFGS finds that the maximum value on the

diagonal of R is two in the second run, and the correspond-

ing gram is “h.” GFGS stops while all elements on the

diagonal of R are zero, and gets FF ¼ f‘e’; ‘h’g. Fig. 4b

displays the logical architecture of the two-tier tables of

EHMA. BecauseB1 ¼ 1, and theH1 table has only 26 entries,
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Fig. 4. An example of EHMA, whereB1 ¼ 1, B2 ¼ 1, m ¼M ¼ 6,W ¼ 3,

and FF ¼ fe; hg. (a) An example of GFGS. (b) The architecture of the

hierarchical hash tables.



the H1 table can be stored in the cache memory. The
fid fields of H1 point to the corresponding offsets of H2. As
the pattern “actress” has ‘e’ 2 FF and the pivot pair “es,”
according to CBS it is grouped to the cluster PPe;s. The shift
fields of H1 and H2 are obtained from the proposed safety
shift strategy. Initially, since B1 � 1, H1:shift ¼ 4. While
B1 þB2 > 1, H2:shift is set to 5 for those entries whose
second pivot is not the prefix of any pattern (that is,
b 62 f‘a’; ‘f’; ‘t’g); otherwise, H2:shift is set to 4. When
scanning the pattern “actress,” the shift fields of H1ð‘a’Þ,
H1ð‘c’Þ, and H1ð‘t’Þ are updated to 3, 2, and 1, respectively
(the second safety shift strategy); the shift fields of H1ð‘r’Þ
and H1ð‘s’Þ are both updated to 1, while the H1ð‘e’Þ:shift is
updated to 0, because ‘e’ 2 FF (the third strategy). As for the
table H2, only the existing entry H2ð‘e’; ‘s’Þ has to be
updated to 2, because B ¼ B1 þB2 ¼ 2, and no prefix of FF
is the suffix of “es” (the third strategy). The remainders of
the patterns follow the same clustering and safety shift
strategy. The shift fields of H1 and H2 tables are updated
when the new shift is less than the previous one. Let us see
H1ð‘a’Þ for example. When scanning the pattern “actress,”
H1ð‘a’Þ:shift¼3 (as p1½i�¼ ‘a’, i¼1 and m�W � iþ 1¼3);
while scanning the pattern “teacher,” H1ð‘a’Þ:shift is
updated to 1 (as “a” is the third character of “teacher”:
i ¼ 3, then m�W � iþ 1 ¼ 1), because the new value is
smaller than the previous one (the second strategy). Finally,
H1ð‘a’Þ:shift ¼ 1 is saved in the table because the remaining
patterns do not have H1ð‘a’Þ:shift smaller than one.
Notably, the maximum shift of H1 and H2 is large (4 and
5, respectively). Consequently, the number of scans and
comparisons can be significantly reduced.

3.5 The Online Hierarchical and Cluster-Wise
Matching

The previous sections presented the offline stage of EHMA,
which builds two index tables H1 and H2, holding the
indexing and pattern information in the cache memory
and external memory, respectively. These two tables are
regarded as the two-tier filters and indices for the online
matching. This section presents the online matching
procedure in detail.

In network intrusion detection systems, an input packet
is forwarded to a detection engine. The detection engine
then returns the search results of matched patterns PPM . This
study focuses on the payload inspection and assumes
that each input is a packet payload T . As a hierarchical
matching, the online matching procedure of EHMA is
divided into two tiers: Tier-1 Matching and Tier-2 Match-
ing. The hierarchical architecture is applied to decrease the
number of external memory accesses. The small H1 is stored
in the cache of the processing unit for Tier-1 Matching,
while the H2 with pattern content is in the external memory
for Tier-2 Matching. The external memory access is
necessary only when the Tier-2 Matching is invoked. This
process is described in detail in the following sections.

3.5.1 Tier-1 Matching

In online matching, the payload T is scanned from left to
right, and each B1-gram of T is the key to fetch the entry
H1ðt1Þ, where t1 ¼ TB1 ½i�. The H1 acts as the first-tier filter of
EHMA, by checking whether T may likely contain patterns

belonging the pattern set PP . Because H1 is small enough to
be stored in the on-chip memory during the online
matching procedure, the latency of accessing H1 is very
small.

In the Tier-1 Matching, first the shift field is checked. If
H1ðt1Þ:shift 6¼ 0, i.e., t1 62 FF , then no external memory is
necessary. The obtained H1ðt1Þ:shift also determines the
number of grams that can be skipped without further process.
The next gram to check is then TB1 ½iþH1ðt1Þ:shift�. After
reading the next gram, the matching process repeats as in the
previous steps and remains in the Tier-1 Matching. Because
jFF j � j�jB1 , the probability of t1 2 FF is small and most grams
of T gain the shifts, thus avoiding the Tier-2 Matching.
Consequently, both the number of string comparisons and
the costly memory accesses can be significantly reduced.

Otherwise, if t1 2 FF , then T may contain a malicious
pattern pk 2 PP , where t1 � pk. Simply stated, if
H1ðt1Þ:shift ¼ 0, then T may have a pattern that belongs
to the cluster of pivot pair ðt1; t2Þ, where t2 ¼ TB2 ½iþB1�.
Therefore, the matching procedure activates Tier-2 Match-
ing to identify the pattern. If H1ðt1Þ:pid is not NULL,
then the current gram t1 itself is a pattern, and this
matched pattern is also added into PPM .

3.5.2 Tier-2 Matching

After the Tier-1 Matching, if H1ðt1Þ:shift ¼ 0, then the
matching procedure proceeds to the Tier-2 Matching. The
function H2ðt1; t2Þ indicates the location of the correspond-
ing cluster according to input T . Since EHMA is a cluster-
wise matching algorithm, only the patterns in the small
cluster of pivot pair ðt1; t2Þ, which are similar to T , are
loaded to the processing unit for further checks.

Tier-2 Matching first checks the pid field of H2. If

H2ðt1; t2Þ:pid is NULL, then the cluster ðt1; t2Þ contains no

pattern, and no pattern comparison is necessary. Otherwise,

if H2ðt1; t2Þ:pid is not NULL, then this cluster contains

patterns. The pattern content in the H2ðt1; t2Þ:data is then

compared with the corresponding substring of T : subðT;
i�H2ðt1; t2Þ:offset;H2ðt1; t2Þ:sizeÞ. IfH2ðt1; t2Þ:next is valid

and points to the next entry, here given by H2ða; bÞ, then the

cluster contains other patterns. Similarly, the pattern in

H2ða; bÞ:data is also fetched and compared with the substring

of T starting at T ½i�H2ða; bÞ:offset� of length H2ða; bÞ:size.
Every matched pattern is added to the matched pattern set

PPM and its corresponding matched pid set PIDPIDM in order.

Until all patterns in this cluster are checked, the next gram

TB1 ½iþH2ðt1; t2Þ:shift� is then read, and the online matching

procedure returns to the Tier-1 Matching. H2ðt1; t2Þ:shift
also indicates the number of characters of T that can be

skipped, since the next possible frequent-common gram may

only appear far away than H2ðt1; t2Þ:shift.
Notably, if a pattern pk exists in T , then all grams of pk

appear in T . The clustering pivot pair of pattern pk
ðpB1

k ½j�; p
B2

k ½jþB1�Þ is certainly scanned, say at t1 and t2, so

that t1 ¼ pB1

k ½j� 2 FF and t2 ¼ pB2

k ½jþB1�. Pattern pk is then

recognized when T is compared with the patterns in the

cluster ðt1; t2Þ during the online matching procedure. Based

on the Safety Shift Strategy, EHMA never skips any frequent-

common gram. Consequently, no patterns in the payload T

are missed.
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The online matching procedure of EHMA is described in
Fig. 5, including Tier-1 Matching and Tier-2 Matching. Since
EHMA introducesH1 andH2 as filters, and CBS is employed,
only a few suspected patterns are loaded from external
memory and compared with T . Because generally most of the
packets are innocent over the network, and the frequent-
common grams ðFF Þ narrow the searching field, EHMA
performs a fast scan over the packets. The returned resultPPM

includes all matched patterns for a given T and is applied to
make the final decision and analyze the impending attacks.
The final decision depends on decision-making rules.

An example is provided to demonstrate the online
matching of EHMA. Assume that the H1 and H2 tables have
been built as Fig. 4, whereW ¼ 3 andM ¼ 6. Assume that the
input T is “kangaroo” as given in Fig. 6. The scan runs from
left to right. The scan starts at “g” (ðM �W þ 1Þth gram),
obtainingH1ð‘g’Þ:shift ¼ 4. Therefore, Tier-1 Matching shifts
four characters. Because the pointer goes beyond jT j �B1

after the shift, EHMA completes scanning the input T . This
example only requires one on-cache table lookup and no
external memory access. By only checking T with the
embedded table H1, EHMA can know that T contains no
pattern.

Considering another example where T ¼ ‘iamanactress’
as shown in Fig. 7, the first scanned B1-gram is “a,” yielding
H1ð‘a’Þ:shift ¼ 1. Thus, the matching process stays in the
Tier-1 Matching, and the next B1-gram “n” is read after
shifting one character, yielding H1ð‘n’Þ:shift ¼ 4. Similarly,
staying in the Tier-1 Matching, and the next B1-gram “n” is
read after shifting one character, yielding H1ð‘n’Þ:shift ¼ 4.
Similarly, staying in the Tier-1 Matching, the matching
process obtains H1ð‘r’Þ:shift ¼ 1 and H1ð‘e’Þ:shift ¼ 0
in order after shifting. While H1ð‘e’Þ:shift ¼ 0, the
Tier-2 Matching is activated. After checking the field
H2ð‘e’; ‘s’Þ:pid and finding that it is not NULL, EHMA
knows a suspected pattern may exist. The Tier-2 Matching
then compares input T with the pattern in the cluster PPe;s,
where H2ð‘e’; ‘s’Þ:data ¼ ‘actress’, and gets a match. Because
this cluster contains no other patterns, the matching process
returns to Tier-1 Matching with H2ð‘e’; ‘s’Þ:shift ¼ 2. Since
the pointer goes beyond jT j �B1 after shifting two
characters, the matching process for the input T is finished.
In this case, H1 is checked four times, and H2 is fetched
only once for the string T of 12 characters. EHMA thus
significantly reduces the latency caused by memory
accesses.

3.6 Incremental Update

EHMA can achieve incremental update by adding a count
field in the H2, which records the current size of every
cluster. The count field has the same function as the
matrix N of CBS. When a pattern p is added into PP , after
checking the count fields of the possible entries according
to the pivot pairs of p, the smallest cluster, say PPx;y, can
be found. Then, p is added into the cluster PPx;y by
following the steps of the table construction mentioned
previously. If no B1-gram of p belongs to FF and p finds
no existing entry in the H2, then a random B1-gram of p,
say g, is chosen and added into FF (H1ðgÞ is modified
accordingly), and a memory space is allocated for cluster
set PPg in H2. A random pivot pair of p, say ðg; hÞ, is
chosen and then p is added into the cluster PPg;h. The shift
fields of H1 and H2 may be modified because of the
added p. Since the safety shift strategy scans the patterns
one by one to calculate the shift values, no modification to
the safety shift strategy is required for pattern addition.
The added p can be recognized as the last scanned pattern
of the safety shift strategy. At most jpj �B1 þ 1 fields of
H1 and jpj �B2 þ 1 fields of H2 are modified for a pattern
addition.

To delete a pattern p from PP , the first step is to find the
pattern. When p is found, just link p’s previous entry to p’s
next entry by modifying its next field inH2 and delete p from
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Fig. 5. The online matching procedure, including Tier-1 Matching and

Tier-2 Matching.

Fig. 6. An example of matching process with input “kangaroo.”

Fig. 7. An example of matching process with input “iamanactress.”



tables. Then, subtract the count field of the cluster that p
belongs to. The shift fields are not modified for pattern
deletion. Because the shift values are universal minimum in
the safety shift strategy, they may not be optimum after
pattern deletion. However, no error will occur after pattern
deletion, even while the shift fields are not modified.
Consequently, EHMA needs not recalculate the whole index
tables as long as the pattern database is changed. EHMA can
refresh the index tables when the system is not busy.

3.7 Worst Case

If a given string T , which has to do the exact string
comparisons the most times, is formed badly and no
character of T can be skipped during the online matching
process, processing this badly formed T is the worst case of
EHMA. Assume the largest cluster size is Lc. When every
character T ½t� 2 FF , H1ðT ½t�Þ:shift ¼ 0, and each correspond-
ing indexed cluster is the largest ðjPPT ½t�;T ½tþ1�j ¼ LcÞ, T is a
badly formed string and this is the worst scenario of
EHMA. As for all T ½t�, T ½t� 2 FF and H1ðT ½t�Þ:shift ¼ 0, the
probability to fetch the table H2 for the badly formed T is
one. Thus, the number of external memory accesses per
character in the worst case is

NWST
RAM ¼

jT j �B2ð Þ � Lc
jT j < Lc;

assuming that fetching one pattern needs one memory
access. Define the largest pattern size in PP as Lp. When
every input character points to the largest cluster, in which
every pattern has the longest size, this badly formed T
requires the largest number of comparisons. Hence, the
number of character comparisons per input character is

NWST
CMP ¼ NWST

RAM � Lp < Lc � Lp:

Obviously, the worst-case performance depends on Lc.
To derive Lc, assume there is a largest cluster, say PPx;y.
Since PPx;y is the largest cluster, assume that the cluster size
is always larger than one, and initially, the probability that
its cluster size increases from 0 to 1 is one.

As PPx;y is the largest cluster, based on CBS, a given
pattern p will not be clustered into PPx;y, unless all available
pivot pairs of p are not in the set FF � � except ðx; yÞ. Since
the pattern database is usually predefined and static,
assume the given patterns are uniformly distributed. There-
fore, the probability that jPPx;yj increases from i to iþ 1 is

Pr jPx;yj ¼ i! iþ 1
� �

¼ j�j2 � jF j � j�j þ 1

j�j2

 !jpj�B2�1

:

As in the worst-case scenario, every pattern has the
longest size Lp, the equation is rewritten as

Pr jPx;yj ¼ i! iþ 1
� �

¼ j�j2 � jF j � j�j þ 1

j�j2

 !jLpj�B2�1

:

Thereby, the probability that the cluster size of PPx;y is
maximum ðLcÞ is derived as follows:

Pr jPx;yj ¼ Lc
� �

¼ j�j2 � jF j � j�j þ 1

j�j2

 ! jLpj�B2�1ð ÞðLc�1Þ

:

When jPP j is 1,200 with jFF j ¼ 77, j�j ¼ 256, and Lp ¼ 128,
the probability that Lc ¼ 4 is only 7� 10�79. When replacing
Lp with the average pattern size, which is about 11 in the
Snort, then the probability thatLc ¼ 4 is about 3:6� 10�6. The
probability thatLc ¼ 4 is very small, which infers that EHMA
has a small Lc, and thus NWST

RAM and NWST
CMP are small.

Consequently, the worst-case performance of EHMA is
moderate and acceptable becauseLc is much smaller than jPP j.

4 RESULTS

As the number of network security threats rises, the NIDS
has become one of the most important applications of
packet inspection [24], [25]. Therefore, this study demon-
strates the feasibility of integrating the proposed EHMA
with the promising NIDS. This section presents the
simulation results of EHMA deployed in the NIDS,
compared with the original HMA [9], BMH algorithm [3],
WM algorithm [10], WM-PH [12], and AC-C [8]. In the
simulations, the assembly-like microprograms were emu-
lated for EHMA, BMH, WM, WM-PH, and AC-C using
RISC instructions of general network processors (such as
ADD, XOR, MOV), and the number of instructions and the
number of memory accesses needed to process a packet
were calculated. To simplify the evaluation, the simulation
assumed that one microprocessor was employed.

4.1 Measurements

Define I as the average number of RISC instructions
(including comparisons and calculations) and L as the
average number of local memory accesses (including
reading data from the cache to the registers for further
processes), for each payload character in the pattern
matching. E represents the average number of external
memory accesses per input character, which includes
loading the input packets, querying the entries of tables
in the external memory, and fetching the patterns. wI
indicates the time needed by one instruction or one local
memory/register access, and wE indicates the time for one
external memory access. The following measurements are
given: the average computation cycles  I ¼ I � wI ; the
average memory latency  M ¼ E � wE þ L� wI ; and the
total average matching time � ¼  I þ  M , which is re-
garded as the overall performance.

In the simulations, the skip table of BMH was assumed
to be small enough to be loaded into the cache memory, and
therefore, only one external memory access was counted
during the matching process of BMH for each pattern. One
external memory access was assumed for AC-C, although
it typically needs two memory references to fetch the
transition matrices, and the fail table or the matched
patterns. Table 1 lists the simulation parameters.
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The Simulation Parameters



4.2 Traffic Models

The simulations used two free and real pattern sets, R1 and
R2, from Snort in August 2004 and May 2008, respectively
[1], although the pattern set can be self-defined or any
commercial pattern set. The number of distinct patterns is
about 1,250 in the R1, where the average length of a pattern
is about 11.2 bytes (the statistics of the pattern set listed in
Table 2); while the number of distinct patterns becomes up
to about 5,000 in the R2. Since Snort patterns are written in
mixed plain text and hex formatted bytecodes, the alphabet
size ðj�jÞwas set to 256 in the simulations. In the simulation
traffic models, Models I and II use R1, and Model III uses R2

as the matching pattern sets.
Table 3 shows the relationships between the number of

patterns jPP j and the number of frequent-common grams jFF j
of the EHMA, where the lengths of patterns are in the range
from 1 to 122, m ¼ jpij, and the patterns are randomly
selected from R1. The results in Table 3 reveal that the
growth rate of jFF j is much slower than that of jPP j.

4.2.1 Model I

In Model I, the synthetic malicious packets are generated by
randomly choosing patterns from the pattern set PP and
spreading over the packet payloads. The attack load � is
defined to represent the expected number of malicious
patterns existing in one packet. For instance, if � ¼ 2, then
each packet contains two harmful patterns on average.
Except for the injected patterns parameterized by �, the
background characters of a packet were randomly drawn
from � to imitate the normal packet content. Hence, the
random background may unconsciously contain patterns.

4.2.2 Model II

To evaluate the performance of algorithms in a real intense
attack, a trace from the Capture-the-Flag contest held at
Defcon9 was adopted as the input traffic in Model II. The
Defcon Capture-the-Flag contest is the largest security
hacking game, in which competitors try to break into the
servers of others while protecting their own servers, each
hiding several security holes [26].

4.2.3 Model III

Model III uses a real 2-hour trace as the input traffic, and
the more recent Snort rules R2 as the pattern set jPP j. This
real trace recorded all IP packets in a laboratory of
Providence University for 2 hours. The laboratory has an

FTP server, a Web server, and three PCs running several
network application clients.

Table 5 lists the statistics of the traffic traces used in
Model II and Model III, where the values are measured by
traffic analysis tools: tcpstat and tcptrace.

4.3 Memory Requirements

For fast lookup and matching, the lookup information and
patterns are usually saved in the memory using a tabular
structure. Therefore, the memory requirements are esti-
mated according to the number of entries. Since all
algorithms need to keep the pattern content in the (external)
memory, this section only discusses the extra memory
requirement for the tables of each algorithm. In the
simulations, the numbers of characters in the clustering
pivots (B1 and B2) were both assumed to be 1. Because the
H1 of EHMA is a direct index table, the cache memory
space ðMIÞ of EHMA comprises j�j entries. Based on GFGS
and CBS, the number of entries in H2 is the total number of
possible clusters (plus a small memory pool). Since the
domain of possible pivot pairs is FF � �, the external
memory space for H2 ðMEÞ of EHMA is OðjFF j � j�jÞ.
HMA has the same memory requirement as EHMA. The
shift table of WM is also a direct hash table. The gram size of
WM (block size B) was 3 in the simulations, so the shift table
of WM had j�j3 entries. The grouped skip table of WM-PH
used in the simulations was a direct prefix hash table with a
prefix length of three characters. Therefore, the skip table of
WM-PH comprises j�j3 entries. Every pattern in the BMH
has its own skip table of j�j entries, so that the table of BMH
has jPP j � j�j entries. Because each skip table of BMH (for
one pattern) is small enough to be loaded into the local
memory, for fairness, a cache memory space was allocated
to lower the number of external memory accesses. The
BMH-O is the original BMH with no local cache and
assesses the latency penalty. Notably, WM-PH, AC-C, and
BMH-O also require cache memory to store the skip value
or one state during the matching process. Table 4 lists the
memory requirements of EHMA, HMA, WM, WM-PH,
BMH, and AC-C. The scale relation of the parameters is
jFF j < j�j � jPP j < S � j�j3.
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In the simulations using Model I, when jPP j is 1,200, theH1

and H2 of EHMA needs 256 and 19,712 entries, respectively
(about 768 bytes on-chip memory and 38.5-Kbyte external
memory, including the shared memory pool); HMA has the
same number of entries as EHMA but needs smaller entry
size as HMA has no shift field; the table of WM needs more
than 16 million entries (16-Mbyte external memory, in the
case without using an additional prefix table); the table size
of WM-PH is the same as that of WM; BMH and BMH-O
need more than 300,000 entries (300-Kbyte external mem-
ory); and AC-C needs 10,731 states (461 Kbytes with each
node of 44 bytes). The memory size of all algorithms listed
previously excludes pattern content. Obviously, the re-
quired memory space of EHMA is quite small.

4.4 Results and Discussion

The minimum pattern length of the feeding patterns in
Figs. 8, 9, 10, and 11 is only one character, i.e.,M ¼ 1. Because
the minimum pattern length of WM is restricted to be larger
than the gram size, in this case three characters, WM is not

compared in these figures. In Figs. 8, 9, 10, and 11, the results
labeling EHMA in the following simulations use the
sampling window with parameters W ¼ m ¼ jpij, which
means that each pattern is sampled in its entirety.

Fig. 8 compares the average matching time ð�Þ of EHMA,
HMA, WM-PH, AC-C, BMH, and BMH-O using Model I
with different attack loads � ¼ 0 and � ¼ 4, respectively. It
also shows the impact of the number of patterns ðjPP jÞ on the
matching time. Simulation results reveal that EHMA out-
performs others even when jPP j and � increase. EHMA has
slightly higher growth rate than WM-PH, because it has a

SHEU ET AL.: IN-DEPTH PACKET INSPECTION USING A HIERARCHICAL PATTERN MATCHING ALGORITHM 185

Fig. 8. The average matching time ð�Þ versus the number of

patterns ðjPP jÞ, using Model I with � ¼ 0 and � ¼ 4, where wE ¼ 100.

Fig. 9. The proportion of  I to � and  I to � using Model I with
jPP j ¼ 1;200 and wE¼100. (a) �¼0 and jPP j¼1;200. (b) �¼4 and
jPP j¼1;200.

Fig. 10. The comparisons of average number of external memory

accesses ðEÞ using Model I with wE ¼ 100. (a) � ¼ 0. (b) � ¼ 4.

Fig. 11. The average matching time ð�Þ versus the number of

patterns ðjPP jÞ using Model II. (a) wE ¼ 100. (b) wE ¼ 10.



much smaller table size. WM-PH gains performance by
having a large direct index table. Notably, the matching time
of the original AC using basic structure is independent from
jPP j and �. The curves of AC-C increase with jPP j and � owing
to the popsum used in the AC-C algorithm. The increasing
jPP j makes the matching time of BMH (BMH-O) rise steeply,
because the BMH is originally a single-pattern matching
algorithm that simply executes iteratively for multipattern
matching.

The case � ¼ 0 means that the traffic has no malicious
packets. In this case, the proposed EHMA needs only 9.5-
19.9 cycles per character on average, which is about 0.9,
3.3-5.3, 16.3-26.8, 40-117, and 408-1,161 times less than the
matching time of HMA, WM-PH, AC-C, BMH, and BMH-O,
respectively, under various pattern set sizes. We can say
that EHMA is very appropriate for network equipment,
because generally most packets are innocent ð� � 0Þ. The
time available for the detection engine to process the
malicious packets rises as the innocent packets are
processed more quickly.

When � ¼ 4, then the systems are under heavy attack,
and the traffic contains many monitored patterns. In this
situation, the matching time of EHMA is about 0.89-0.94,
3.1-4.5, 14.1-24.9, 33.2-96.4, and 335-957 times less than that
of HMA, WM-PH, AC-C, BMH, and BMH-O, respectively.
Additionally, the performance of EHMA is quite stable,
since � rises only slightly as � or jPP j rises.

The processing time of the pattern matching includes the
time necessary for instructions ð IÞ and the time for
memory accesses ð MÞ. To investigate their impacts on the
algorithms, these two measurements are separated from
overall matching costs since different systems introduce
different implementation overheads. Fig. 9 displays the
proportion of  I to � and  M to �, respectively, for all
approaches using Model I with jPP j ¼ 1; 200, where Fig. 9a
shows the results under � ¼ 0, and Fig. 9b shows the results
under � ¼ 4. In Fig. 9, the upper part of the bar is  I and the
lower part of the bar is  M . The results show that the  I of
EHMA is close to that of HMA and WM-PH, but  M of
EHMA is much less than others. The proportion of  M to �
of BMH seems smaller than others, because the whole skip
table of a pattern is idealistically assumed to be loaded
within one external memory access and kept in the cache
during the matching process for each pattern. Because
AC-C compresses the data structure of the state machine, it
requires more time to derive the next state pointer.
Therefore, AC-C does not have the smallest  I . Simulation
results show that the  I does not significantly rise with � in
any of the experiments, because each algorithm has already
tried to reduce the computation load ð IÞ. However,  M
dominates the overall matching cost. This reveals that the
number of external memory accesses is the bottleneck of
almost all algorithms. This result also reflects our opinion
mentioned previously that the essential issue in designing a
high-speed detection engine is to reduce the number of
required external memory accesses.

Fig. 10 compares the average number of external
memory accesses per character ðEÞ of the state-of-the-art
pattern matching algorithms. The figure shows that the E of
EHMA is only 0.06-0.19, which is much smaller than others.
In other words, EHMA can successfully filter out about

94 percent payloads when jPP j ¼ 200 and 81 percent when
jPP j ¼ 1; 200, requiring no external memory accesses and
string comparisons. The E of EHMA rises only slightly with
rising �. The increasing rate of E is slightly higher in EHMA
than in WM-PH when jPP j rises, because EMHA has much
smaller table size than WM-PH. Since BMH is based on the
single-pattern matching algorithm, its E is proportional to
jPP j. Consequently, the hierarchical matching along with the
safety shift strategy is highly effective in reducing the
memory latency.

Figs. 11 and 12 adopted Model II as a real-life network
environment under intense attack to evaluate the perfor-
mance of the state-of-the-art algorithms. Since different
implementation systems may have different external
memory costs ðwEÞ, Fig. 11 illustrates two results with
wE ¼ 100 and wE ¼ 10, respectively. To lower the impact
of wE on an algorithm, a very small value of wE is adopted
in Fig. 11b. The results in Fig. 11 indicate that EHMA
significantly outperforms others in both cases of small and
large pattern set sizes even in the intense attack. EHMA
still performs better than others even when the penalty on
the external memory access ðwEÞ is reduced (as shown in
Fig. 11b). Comparing EHMA with HMA in Figs. 8, 9, 10,
and 11 reveals that the proposed safety shift strategy
significantly reduces the number of external memory
accesses and thus improves the matching performance.

The minimum length of Snort patterns is one character.
However, some detection systems, such as virus detection
systems, have larger minimum pattern lengths. The perfor-
mance of matching algorithms with long minimum pattern
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Fig. 12. The costs versus the number of patterns ðjPP jÞ using Model II,

wE ¼ 100 and M ¼ 10. (a) Average matching time. (b) Extra memory

requirement.



lengths was examined using Model II, including only the
patterns with lengths greater than 10 ðM ¼ 10Þ from
Snort patterns, as drawn in Fig. 12. Since the number of
patterns whose length is larger than 10 characters in R1

is around 500, Fig. 12 shows the cases of jPP j ¼ 200
and jPP j ¼ 500, respectively. Fig. 12a shows the average
processing time ð�Þ; Fig. 12b shows the memory requirement
of the fast index/hash tables, excluding the memory for
pattern contents. Since hereM is larger than the gram size of
WM, which is three as mentioned before, the performance of
WM is compared here. The result labeling EHMAðW ¼ 5Þ is
the case using EHMA algorithm with m ¼M ¼ 10 and
W ¼ 5. Recall that the sampling window of EHMA is the
entire pattern content, that is, m ¼M ¼ jpij. To observe the
performance of WM and WM-PH with smaller hash tables,
Fig. 12 also displays two additional cases with block size of
two characters, WMðB ¼ 2Þ and WM-PHðB ¼ 2Þ.

Before discussing the simulation results of Fig. 12, Table 6
presents the effect of the size of sampling window ðWÞ on
the performance of EHMA in terms of the average shift
values of H1 and H2, the size of the set of frequent-common
grams ðjFF jÞ derived from GFGS, the average number of
actual shifts, and the average number of external memory
accesses, using the same traffic model as in Fig. 12. Table 6
shows that the number of candidate common grams
increases with increasing W , resulting in smaller jFF j. The
average number of H1:shift and H2:shift increases when
W decreases. Since the traffic spectrum is not normally
distributed, the actual average number of shifts during
matching process is not the same as the average of H1:shift
and H2:shift. However, the trend is the same. E is effected
by both jFF j and the actual average shift.

Fig. 12a shows that EHMAðW ¼ 5Þ outperforms EHMA
and others when jPP j ¼ 200; while EHMA performs better
than EHMAðW ¼ 5Þ and others when jPP j ¼ 500. Therefore,
reducing jFF j becomes more important than increasing the
average number of shift values when jPP j is large. Since all
algorithms need a copy of the pattern contents, Fig. 12b only
displays the extra memory requirement of every algorithm
for the index/hash tables. Fig. 12b shows that the required
memory of EHMA is only slightly larger than that of HMA
but much smaller than that of others. The required memory
of EHMA grows moderately with jPP j. The memory of
EHMAðW ¼ 5Þ is greater than that of EHMA due to the
larger jFF j. As shown in Fig. 12, EHMA is highly effective in
reducing the required external memory, providing efficient
performance even in the virus-detection-like model.

Fig. 13 uses Model III as real-life normal traffic to show
the performance of the algorithms. Meanwhile, to demon-
strate the effect of the rising number of patterns on the
matching performance, a more recent Snort rule set R2 of
about 5,000 patterns are used in Model III. Fig. 13 shows
that EHMA performs better than others even when the
pattern set is very large. The matching time of EHMA only
moderately increases with the rising jPP j.

5 CONCLUSIONS

The increasing variety of network applications and stakes
held by various users are creating a strong demand for fast
in-depth packet inspection. The most important component
of in-depth packet inspection is an efficient multipattern
matching algorithm. This study proposes a novel EHMA for
packet inspection. EHMA applies the frequent-common
grams obtained by the proposed GFGS to narrow the
searching scope and to quickly filter out the innocent
packets. The matching process then focuses only on the
most suspected packets. EHMA concentrates the patterns
into a small on-chip table and performs simple and fast
checks. Additionally, EHMA uses the frequency-based bad
gram heuristic to speed up the scanning process. The
hierarchical matching significantly reduces the average
number of external memory accesses to only 6 percent to
19 percent, thus improving the matching performance. The
required memory of EHMA is only about 40 Kbytes in
addition to the pattern contents of Snort rules. Particularly,
EHMA is very simple and can be easily implemented in
both software-based and hardware-based platforms. This
study also discusses and evaluates current multipattern
matching algorithms for NIDSs. Simulation results show
that EHMA performs about 0.89-1,161 times better than
others. Even under real-life intense attack, EHMA signifi-
cantly outperforms others. EHMA also works well for the
systems with larger minimum pattern size, such as virus
detection systems. In conclusion, EHMA facilitates the
creation of efficient and cost-effective pattern detection
engines for packet inspection.
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TABLE 6
The Impact of the Size of Sampling Window ðW Þ in the

Shift Values of Tables, jFF j, Actual Matching Shifts,
and E Using Model II

Fig. 13. The average matching time ð�Þ versus the number of

patterns ðjPP jÞ using Model III, wE ¼ 100.
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